We're sorry, but your web browser is out of date and is not compatible with mountwashington.org.
Update your browser at www.browsehappy.com!

Current Projects

Global Positioning System Integrated Precipitable Water Vapor Instrument
A Global Positioning System (GPS) antenna in a fixed position measures the delay in the reception of signals from a network of GPS satellites in orbit. The analysis of the time delay in the reception of the signals from space can determine the amount of water vapor in the atmosphere. This surface-based instrument is located in Bartlett, N.H. and delivers data into the NOAA Earth System Research Laboratory's Ground-Based GPS Meteorology Network to be used in operational forecasting.

Monitoring the Intensity of Cosmic Rays From Outer Space
This long-term neutron measurement project was the longest running research project at the Observatory, conducted from 1955-2006 under the tutelage of the late Dr. Jack Lockwood and Dr. Jim Ryan of UNH's Physics Department, Institute for the Study of Earth, Oceans, and Space.

Mount Washington Regional Mesonet
Since early in its history the Observatory has operated and maintained equipment for research, testing and environmental monitoring purposes at its facility on the summit and since the late 1990s at a site in Bartlett, N.H. Since the mid-2000s, the Observatory has been developing and deploying a wide network of remote sites that monitor environmental data. This new "Mesonet" includes a vertical transect of the atmosphere at 1,000-foot intervals along the Mt. Washington Auto Road and an assortment of high elevation sites at ski area summits, Appalachian Mountain Club huts and other facilities.


Student Research

In partnership with Plymouth State University (PSU), undergraduate and graduate students learn through original research projects coordinated by jointly-appointed Mount Washington Observatory (MWO) Director of Research and PSU Research Assistant Professor Dr. Eric Kelsey.

FALL 2013 STUDENT RESEARCH

MWO Director of Research Eric Kelsey teamed with University of Bergen, Norway Research Professor Dr. Michel Mesquita to teach PSU meteorology graduate students how to use a high-resolution numerical weather forecasting model in Kelsey's fall 2013 Boundary Layer Meteorology course. Dr. Mesquita joined the class regularly through online video conferencing to help educate students about numerical weather prediction and advise them on the modeling portion of their term project.

Students learned how to use the Weather Research and Forecasting (WRF) model by completing an online tutorial about the WRF model that was developed by Dr. Mesquita and modified by Kelsey for the course. After completion of the online tutorial, the students worked as a team on their term project, which required the students to: 1) chose a boundary layer phenomenon (e.g., nocturnal inversion), 2) develop and execute a field campaign to measure this boundary layer phenomenon using PSU and MWO instrumentation, 3) analyze the data, 4) use the WRF to simulate the boundary layer phenomenon, and 5) quantify the WRF model forecast skill of the boundary layer phenomenon. The students chose the atmospheric structure of nocturnal boundary layers in Pinkham Notch, NH, on clear and calm nights as their boundary layer phenomenon to study.

The students began their project by carefully detailing these tasks in a NOAA-style proposal, and concluded their project by summarizing their results in an AMS-style paper, which will be submitted to a peer-reviewed American Meteorological Society journal. The students also presented their results to the public at the end of the fall semester in December.

By the completion of the project, students had gained valuable experience in nearly all aspects of scientific research: writing a scientific proposal, executing a field campaign to observe weather with scientific instruments, running a numerical weather model, analyzing observational and model data, presenting scientific results, and writing a journal-style article.

Results from this project will help identify strengths and weaknesses in the WRF model that can be used to improve the WRF model forecast skill.


Intern Research

Mount Washington Observatory offers a competitive internship program to engage students and recent graduates in hands-on research and learning at our mountaintop weather station. Interns conduct original research projects while living and working alongside Observatory scientists, learning basic weather observation and recording procedures and assisting staff in operational tasks.

The goal of intern research is to discover something new that will advance understanding of the weather and climate of the White Mountains and/or develop a new forecasting tool for Observatory scientists. Interns have access to Mount Washington Observatory’s climate record and Mesonet data, and the mountain itself offers a truly unique learning environment. From rare flora and fauna in the high elevations, to human impacts on the health of the hardwood forests, students have limitless opportunities to learn about how the atmosphere, biosphere, hydrosphere and anthroposphere shape the state of the White Mountains and beyond.

Current intern research projects are listed on the intern page.

CONTACT

Dr. Eric Kelsey, Director of Research
(603) 535-2271

Email

Winter Mountaineering Trips

Winter Mountaineering Trips

Experience winter on Mount Washington by climbing to the summit with one of our partner climbing schools and staying overnight at our legendary summit weather station.

Learn More
Winter Trips

Winter Trips

Experience winter on Mount Washington, book your summit adventure today!

Sign Up Now
Buy MWO Prints

Buy MWO Prints

Purchase a print of one of our stunning photographs and proceeds go to support the nonprofit Mount Washington Observatory.

Buy Now

MEET OUR PARTNERS:

Eastern Mountain Sports Vasque Mt. Washington Auto Road Mount Washington State Park Mt. Washington Valley Cranmore Eaton

© 2017 Mount Washington Observatory
Tel: 603-356-2137
Powered by SilverTech